In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
The study is aimed at elucidating the effect of selenium nanoparticles (SeNPs) on the death of cells in the primary culture of mouse cerebral cortex during oxygen and glucose deprivation (OGD). A primary cell culture of the cerebral cortex containing neurons and astrocytes was subjected to OGD and reoxygenation to simulate cerebral ischemia-like conditions in vitro. To evaluate the neuroprotective effect of SeNPs, cortical astrocytes and neurons were incubated for 24 h with SeNPs, and then subjected to 2-h OGD, followed by 24-h reoxygenation. Vitality tests, fluorescence microscopy, and real-time PCR have shown that incubation of primary cultured neurons and astrocytes with SeNPs at concentrations of 2.5-10 µg/ml under physiological conditions has its own characteristics depending on the type of cells (astrocytes or neurons) and leads to a dose-dependent increase in apoptosis. At low concentration SeNPs (0.5 µg/ml), on the contrary, almost completely suppressed the processes of basic necrosis and apoptosis. Both high (5 µg/ml) and low (0.5 µg/ml) concentrations of SeNPs, added for 24 h to the cells of cerebral cortex, led to an increase in the expression level of genes Bcl-2, Bcl-xL, Socs3, while the expression of Bax was suppressed. Incubation of the cells with 0.5 µg/ml SeNPs led to a decrease in the expression of SelK and SelT. On the contrary, 5 µg/ml SeNPs caused an increase in the expression of SelK, SelN, SelT, SelP. In the ischemic model, after OGD/R, there was a significant death of brain cells by the type of necrosis and apoptosis. OGD/R also led to an increase in mRNA expression of the Bax, SelK, SelN, and SelT genes and suppression of the Bcl-2, Bcl-xL, Socs3, SelP genes. Pre-incubation of cell cultures with 0.5 and 2.5 µg/ml SeNPs led to almost complete inhibition of OGD/R-induced necrosis and greatly reduced apoptosis. Simultaneously with these processes we observed suppression of caspase-3 activation. We hypothesize that the mechanisms of the protective action of SeNPs involve the activation of signaling cascades recruiting nuclear factors Nrf2 and SOCS3/STAT3, as well as the activation of adaptive pathways of ESR signaling of stress arising during OGD and involving selenoproteins SelK and SelT, proteins of the Bcl-2 family ultimately leading to inactivation of caspase-3 and inhibition of apoptosis. Thus, our results demonstrate that SeNPs can act as neuroprotective agents in the treatment of ischemic brain injuries.
The phenomenon of ischemic preconditioning was discovered in 1986 in experiments with the heart, and then it was observed in almost all organs, the kidneys included. This phenomenon is underlain by conditioning of the tissues with short ischemia/reperfusion cycles intended for subsequent exposure to pathological ischemia. Despite the kidneys are not viewed as so vital organs as the brain or the heart, the acute ischemic injury to kidneys is a widespread pathology responsible for the yearly death of almost 2 million patients, while the number of patients with chronic kidney disease is estimated as hundreds of millions or nearly 10% adult population the world over. Currently, it is believed that adaptation of the kidneys to ischemia by preconditioning is the most effective way to prevent the development of acute kidney injury, so deep insight into its molecular mechanisms will be a launch pad for creating the nephroprotective therapy by elevating renal tolerance to oxygen deficiency. This review focuses on the key signaling pathways of kidney ischemic preconditioning, the potential pharmacological mimetics of its key elements, and the limitations of this therapeutic avenue associated with age-related decline of ischemic tolerance of the kidneys.
Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as "uremic toxins". The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.
The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc. However, when assessing the fluorescence, the possibility of the intracellular/intramitochondrial modification of the rhodamine molecule is not taken into account. Such changes were revealed in this work, in which a comparison of normal (astrocytic) and tumor (glioma) cells was conducted. Fluorescent microscopy, flow cytometry, and mass spectrometry revealed significant modifications of rhodamine molecules developing over time, which were prevented by amiodarone apparently due to blocking the release of xenobiotics from the cell and their transformation with the participation of cytochrome P450. Obviously, an important role in these processes is played by the increased retention of rhodamines in tumor cells. Our data require careful evaluation of mitochondrial ∆Ψ potential based on the assessment of the fluorescence of the mitochondrial probe.
Ischemia-like (oxygen-glucose deprivation, OGD) conditions followed by reoxygenation (OGD/R) cause massive death of cerebral cortex cells in culture as a result of the induction of necrosis and apoptosis. Cell death occurs as a result of an OGD-induced increase in Ca2+ ions in the cytosol of neurons and astrocytes, an increase in the expression of genes encoding proapoptotic and inflammatory genes with suppression of protective genes. The deuterated form of linoleic polyunsaturated fatty acid (D4-Lnn) completely inhibits necrosis and greatly reduces apoptotic cell death with an increase in the concentration of fatty acid in the medium. It was shown for the first time that D4-Lnn, through the activation of the phosphoinositide calcium system of astrocytes, causes their reactivation, which correlates with the general cytoprotective effect on the cortical neurons and astrocytes in vitro. The mechanism of the cytoprotective action of D4-Lnn involves the inhibition of the OGD-induced calcium ions, increase in the cytosolic and reactive oxygen species (ROS) overproduction, the enhancement of the expression of protective genes, and the suppression of damaging proteins.
It is known that the development of fibrosis is associated with many diseases, being both a cause and effect of the damage to organs and tissues. Replacement of functional tissue with a scar can lead to organ dysfunction, which is often a life-threatening condition. The development of effective approaches for the prevention or treatment of fibrosis requires an in-depth understanding of all aspects of its pathogenesis, from epithelial-mesenchymal transformation to fibroblast proliferation. Fibrosis can be induced by trauma, ischemic injury, inflammation, and many other pathological states accompanied by repeated cycles of tissue damage and repair. Energy metabolism is the basis of functioning of all cells in an organism and its disruptions are associated with the development of different diseases, hence, it could be a target for the therapy of such pathological processes as ischemia/reperfusion, epilepsy, diabetes, cancer, and neurological disorders. The emergence of fibrosis is also associated with the changes in cell bioenergetics. In this work, we analyzed the changes in the energy metabolism that occur with the progression of fibrosis and evaluated the possibility of affecting energetics as target in the anti-fibrotic approach.
In recent years, much attention has been paid to the study of the therapeutic effect of the microelement selenium, its compounds, especially selenium nanoparticles, with a large number of works devoted to their anticancer effects. Studies proving the neuroprotective properties of selenium nanoparticles in various neurodegenerative diseases began to appear only in the last 5 years. Nevertheless, the mechanisms of the neuroprotective action of selenium nanoparticles under conditions of ischemia and reoxygenation remain unexplored, especially for intracellular Ca2+ signaling and neuroglial interactions. This work is devoted to the study of the cytoprotective mechanisms of selenium nanoparticles in the neuroglial networks of the cerebral cortex under conditions of ischemia/reoxygenation. It was shown for the first time that selenium nanoparticles dose-dependently induce the generation of Ca2+ signals selectively in astrocytes obtained from different parts of the brain. The generation of these Ca2+ signals by astrocytes occurs through the release of Ca2+ ions from the endoplasmic reticulum through the IP3 receptor upon activation of the phosphoinositide signaling pathway. An increase in the concentration of cytosolic Ca2+ in astrocytes leads to the opening of connexin Cx43 hemichannels and the release of ATP and lactate into the extracellular medium, which trigger paracrine activation of the astrocytic network through purinergic receptors. Incubation of cerebral cortex cells with selenium nanoparticles suppresses ischemia-induced increase in cytosolic Ca2+ and necrotic cell death. Activation of A2 reactive astrocytes exclusively after ischemia/reoxygenation, a decrease in the expression level of a number of proapoptotic and proinflammatory genes, an increase in lactate release by astrocytes, and suppression of the hyperexcitation of neuronal networks formed the basis of the cytoprotective effect of selenium nanoparticles in our studies.
The glutathione system in the mitochondria of the brain plays an important role in maintaining the redox balance and thiol-disulfide homeostasis, whose violations are the important component of the biochemical shifts in neurodegenerative diseases. Mitochondrial dysfunction is known to be accompanied by the activation of free radical processes, changes in energy metabolism, and is involved in the induction of apoptotic signals. The formation of disulfide bonds is a leading factor in the folding and maintenance of the three-dimensional conformation of many specific proteins that selectively accumulate in brain structures during neurodegenerative pathology. In this study, we estimated brain mitochondria redox status and functioning during induction of oxidative damage in vitro. We have shown that the development of oxidative stress in vitro is accompanied by inhibition of energy metabolism in the brain mitochondria, a shift in the redox potential of the glutathione system to the oxidized side, and activation of S-glutathionylation of proteins. Moreover, we studied the effects of pantothenic acid derivatives-precursors of coenzyme A (CoA), primarily D-panthenol, that exhibit high neuroprotective activity in experimental models of neurodegeneration. Panthenol contributes to the significant restoration of the activity of enzymes of mitochondrial energy metabolism, normalization of the redox potential of the glutathione system, and a decrease in the level of S-glutathionylated proteins in brain mitochondria. The addition of succinate and glutathione precursor N-acetylcysteine enhances the protective effects of the drug.