Laboratory of structure and functions of mitochondria

A. N. Belozersky Research Institute of Physico-Chemical Biology MSU


Our team
Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.
In this research, we compared the cognitive parameters of 2-, 7-, and 15-month-old mice, changes in mitochondrial DNA (mtDNA) integrity and expression of genes involved in the nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. We showed an age-related decrease in the Nfe2l2 expression in the cerebral cortex, not in the hippocampus. At the same time, we find an increase in the mtDNA copy number in the cerebral cortex, despite the lack of an increase in gene expression, which is involved in the mitochondrial biogenesis regulation. We suppose that increase in mtDNA content is associated with mitophagy downregulation. We supposed that mitophagy downregulation may be associated with an age-related increase in the mtDNA damage. In the hippocampus, we found a decrease in the Bdnf expression, which is involved in the pathways, which play an essential role in regulating long-term memory formation. We showed a deficit of working and reference memory in 15-month-old-mice in the water Morris maze, and a decrease in the exploratory behavior in the open field test. Cognitive impairments in 15-month-old mice correlated with a decrease in Bdnf expression in the hippocampus, Nfe2l2 expression, and an increase in the number of mtDNA damage in the cerebral cortex. Thus, these signaling pathways may be perspective targets for pharmacological intervention to maintain mitochondrial quality control, neuronal plasticity, and prevent the development of age-related cognitive impairment.
A defection of blood circulation in the brain leads to ischemia, damage, and the death of nerve cells. It is known that individual populations of GABAergic neurons are the least resistant to the damaging factors of ischemia and therefore they die first of all, which leads to impaired inhibition in neuronal networks. To date, the neuroprotective properties of a number of calcium-binding proteins (calbindin, calretinin, and parvalbumin), which are markers of GABAergic neurons, are known. Neuronal calcium sensor-1 (NCS-1) is a signaling protein that is expressed in all types of neurons and is involved in the regulation of neurotransmission. The role of NCS-1 in the protection of neurons and especially their individual populations from ischemia and hyperexcitation has not been practically studied. In this work, using the methods of fluorescence microscopy, vitality tests, immunocytochemistry, and PCR analysis, the molecular mechanisms of the protective action of NCS-1 in ischemia/reoxygenation and hyperammonemia were established. Since NCS-1 is most expressed in GABAergic neurons, the knockdown of this protein with siRNA led to the most pronounced consequences in GABAergic neurons. The knockdown of NCS-1 (NCS-1-KD) suppressed the basic expression of protective proteins without significantly reducing cell viability. However, ischemia-like conditions (oxygen-glucose deprivation, OGD) and subsequent 24-h reoxygenation led to a more massive activation of apoptosis and necrosis in neurons with NCS-1-KD, compared to control cells. The mass death of NCS-1-KD cells during OGD and hyperammonemia has been associated with the induction of a more pronounced network hyperexcitation symptom, especially in the population of GABAergic neurons, leading to a global increase in cytosolic calcium ([Ca2+]i). The symptom of hyperexcitation of neurons with NCS-1-KD correlated with a decrease in the level of expression of the calcium-binding protein-parvalbumin. This was accompanied by an increase in the expression of excitatory ionotropic glutamate receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) against the background of suppression of the expression of glutamate decarboxylase (synthesis of γ-aminobutyric acid).
Kidney diseases belong to a group of pathologies, which are most common among elderly people. With age, even outwardly healthy organisms start to exhibit some age-related changes in the renal tissue, which reduce the filtration function of kidneys and increase the susceptibility to injury. The therapy of acute kidney injury (AKI) is aggravated by the absence of targeted pharmacotherapies thus yielding high mortality of patients with AKI. In this study, we analyzed the protective effects of calorie restriction (CR) against ischemic AKI in senescence-accelerated OXYS rats. We observed that CR afforded OXYS rats with significant nephroprotection. To uncover molecular mechanisms of CR beneficial effects, we assessed the levels of anti- and proapoptotic proteins of the Bcl-2 family, COX IV, GAPDH, and mitochondrial deacetylase SIRT-3, as well as alterations in total protein acetylation and carbonylation, mitochondrial dynamics (OPA1, Fis1, Drp1) and kidney regeneration pathways (PCNA, GDF11). The activation of autophagy and mitophagy was analyzed by LC3 II/LC3 I ratio, beclin-1, PINK-1, and total mitochondrial protein ubiquitination. Among all considered protective pathways, the improvement of mitochondrial functioning may be suggested as one of the possible mechanisms for beneficial effects of CR.
The neuroprotective effect of the natural antioxidant taxifolin (TAX) is well known for ischemic pathologies. However, the limitations of taxifolin application are described-poor solubility, low ability to penetrate the blood-brain barrier, and side effects from high doses for stroke therapy. We proposed the problem of targeted delivery of taxifolin and achievement effective concentrations could be solved by developing a nanocomplex of selenium nanoparticles (SeNPs) with taxifolin (Se-TAX). In this study, we developed a selenium-taxifolin nanocomplex based on selenium nanoparticles with a 100 nm size. It was shown that TAX, SeNPs, and Se-TAX were all able to suppress the production of ROS in neurons and astrocytes under exposure to exogenous H2O2 and ischemia-like conditions. However, the Se-TAX nanocomplex appeared to be the most effective, displaying a lower working concentration range and negligible pro-oxidant effect compared with pure SeNPs. The mechanism of Se-TAX beneficial effects involved the activation of some antioxidant enzymes and the suppression of ROS-generating systems during OGD/reoxygenation, while TAX and "naked" SeNPs were less effective in regulating the cellular redox status. Naked SeNPs inhibited a global increase in Ca2+ ions in cytosol, but not OGD-induced hyperexcitation of the neuroglial network, while Se-TAX suppressed both [Ca2+]i rise and hyperexcitation. The effect of TAX at similar doses appeared exclusively in inhibiting OGD-induced hyperexcitation. Analysis of necrosis and apoptosis after OGD/reoxygenation revealed the highest efficiency of the Se-TAX nanocomplex as well. Se-TAX suppressed the expression of proinflammatory and proapoptotic proteins with simultaneous activation of protective genes. We conclude that the Se-TAX nanocomplex combines the antioxidative features taxifolin and the antiapoptotic effect of nanoselenium, involving the regulation of Ca2+ dynamics.
One of the causes of death of patients infected by SARS-CoV-2 is the induced respiratory failure caused by excessive activation of the immune system, the so-called "cytokine storm", leading to damage to lung tissue. In vitro models reproducing various stages of the disease can be used to explore the pathogenetic mechanisms and therapeutic approaches to treating the consequences of a cytokine storm. We have developed an in vitro test system for simulating damage to the pulmonary epithelium as a result of the development of a hyperinflammatory reaction based on the co-cultivation of pulmonary epithelial cells (A549 cells) and human peripheral blood mononuclear cells (PBMC) primed with lipopolysaccharide (LPS). In this model, after 24 h of co-cultivation, a sharp decrease in the rate of proliferation of A549 cells associated with the intrinsic development of oxidative stress and, ultimately, with the induction of PANoptotic death were observed. There was a significant increase in the concentration of 40 cytokines/chemokines in a conditioned medium, including TNF-α, IFN-α, IL-6, and IL-1a, which corresponded to the cytokine profile in patients with severe manifestation of COVID-19. In order to verify the model, the analysis of the anti-inflammatory effects of well-known substances (dexamethasone, LPS from Rhodobacter sphaeroides (LPS-RS), polymyxin B), as well as multipotent mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) was carried out. Dexamethasone and polymyxin B restored the proliferative activity of A549 cells and reduced the concentration of proinflammatory cytokines. MSC demonstrated an ambivalent effect through stimulated production of both pro-inflammatory cytokines and growth factors that regenerate lung tissue. LPS-RS and EVs showed no significant effect. The developed test system can be used to study molecular and cellular pathological processes and to evaluate the effectiveness of various therapeutic approaches for the correction of hyperinflammatory response in COVID-19 patients.
We investigated the nephroprotective effect of D-panthenol in rhabdomyolysis-induced acute kidney injury (AKI). Adult male Wistar rats were injected with 50% glycerol solution to induce rhabdomyolysis. Animals with rhabdomyolysis were injected with D-panthenol (200 mg/kg) for 7 days. On day 8, we examined AKI markers, renal histology, antioxidant capacity, and protein glutathionylation in kidneys to uncover mechanisms of D-panthenol effects. Rhabdomyolysis kidneys were shown to have pathomorphological alterations (mononuclear infiltration, dilatation of tubules, and hyaline casts in Henle's loops and collecting ducts). Activities of skeletal muscle damage markers (creatine kinase and lactate dehydrogenase) increased, myoglobinuria was observed, and creatinine, BUN, and pantetheinase activity in serum and urine rose. Signs of oxidative stress in the kidney tissue of rhabdomyolysis rats, increased levels of lipid peroxidation products, and activities of antioxidant enzymes (SOD, catalase, and glutathione peroxidase) were all alleviated by administration of D-panthenol. Its application improved kidney morphology and decreased AKI markers. Mechanisms of D-panthenol's beneficial effects were associated with an increase in total coenzyme A levels, activity of Krebs cycle enzymes, and attenuation of protein glutathionylation. D-Panthenol protects kidneys from rhabdomyolysis-induced AKI through antioxidant effects, normalization of mitochondrial metabolism, and modulation of glutathione-dependent signaling.
The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.
Investigation of the relationship between inflammation and energy metabolism is important for understanding biology of chronic noncommunicable diseases. Use of metformin, a drug for treatment of diabetes, is considered as a promising direction for treatment of neurodegenerative diseases and other neuropathologies with an inflammatory component. Astrocytes play an important role in the regulation of energy metabolism and neuroinflammation; therefore, we studied the effect of metformin on the cellular responses of primary rat astrocytes cultured in a medium with high glucose concentration (22.5 mM, 48-h incubation). Lipopolysaccharide (LPS) was used to stimulate inflammation. The effects of metformin were assessed by monitoring changes in the expression of proinflammatory cytokines and synthesis of oxylipins, assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Changes at the intracellular level were assessed by analyzing phosphorylation of ERK kinase and transcription factor STAT3, as well as enzymes mediating oxylipin synthesis, cyclooxygenase 1 and 2 (COX). It was found that, independent on glucose concentration, metformin reduced the LPS-stimulated release of cytokines IL-1β and IL-6, decreased activity of the transcription factor STAT3, ERK kinase, synthesis of the derivatives of the cyclooxygenase branch of metabolism of oxylipins and anandamide, and did not affect formation of ROS. The study of energy phenotype of the cells showed that metformin activated glycolysis and inhibited mitochondrial respiration and oxidative phosphorylation, independent on LPS stimulation and cell cultivation at high glucose concentration. Thus, it has been shown that metformin exhibits anti-inflammatory effects, and its effect on the synthesis of cytokines, prostaglandins, and other lipid mediators could determine beneficial effects of metformin in models of neuropathology.