Лаборатория структуры и функций митохондрий

Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского


Наша команда
The question if mitochondria have some kind of immune system is not trivial. The basis for raising this question is the fact that bacteria, which are progenitors of mitochondria, do have an immune system. The CRISPR system in bacteria based on the principle of RNA interference serves as an organized mechanism for destroying alien nucleic acids, primarily those of viral origin. We have shown that mitochondria are also a target for viral attacks, probably due to a related organization of genomes in these organelles and bacteria. Bioinformatic analysis performed in this study has not given a clear answer if there is a CRISPR-like immune system in mitochondria. However, this does not preclude the possibility of mitochondrial immunity that can be difficult to decipher or that is based on some principles other than those of CRISPR.
Here we studied the cytoprotective effect of lithium chloride and sodium valproate in the in vivo model of neonatal cerebral ischemia/hypoxia and analyzed the influence of these substances on the death of the major neurovascular unit components in experimental ischemia in vitro. Lithium chloride and sodium valproate effectively prevented death of neurons, astrocytes, and endothelial cells in the oxygen-glucose deprivation. This treatment protected the brain of newborn rats from ischemia/hypoxia injury. The results suggest that lithium and sodium valproate can be used for the treatment of neurodegenerative pathologies associated with hypoxia and ischemia in newborns.
pubmed

Diseases and Aging: Gender Matters.

27 сентября 2016 г.

At first glance, biological differences between male and female sex seem obvious, but, in fact, they affect a vast number of deeper levels apart from reproductive function and related physiological features. Such differences affect all organizational levels including features of cell physiology and even functioning of separate organelles, which, among other things, account for such global processes as resistance to diseases and aging. Understanding of mechanisms underlying resistance of one of the sexes to pathological processes and aging will allow taking into consideration gender differences while developing drugs and therapeutic approaches, and it will provide an opportunity to reproduce and enhance such resistance in the more vulnerable gender. Here we review physiological as well as cellular and biological features of disease course including aging that are affected by gender and discuss potential mechanisms behind these processes. Such mechanisms include features of oxidative metabolism and mitochondrial functioning.
We compared the efficiency of delivery of multipotent mesenchymal stem cells into the brain after their intravenous and intra-arterial injection. Analysis of the therapeutic effects of cells after experimental traumatic brain injury revealed improvement of the neurological status and motor functions of the damaged hemisphere, the effect being more pronounced after intraarterial injection of cells. Intra-arterial administration was followed by rapid infiltration of the cells into the brain tissue and their number considerably surpassed that after intravenous infusion. Targeted delivery of multipotent mesenchymal stromal cells into the brain after their injection into the carotid arteries substantially potentiated their neuroprotective effects in traumatic brain injury.
We explored the neuroprotective properties of natural plant-derived antioxidants plastoquinone and thymoquinone (2-demethylplastoquinone derivative) modified to be specifically accumulated in mitochondria. The modification was performed through chemical conjugation of the quinones with penetrating cations: Rhodamine 19 or tetraphenylphosphonium. Neuroprotective properties were evaluated in a model of middle cerebral artery occlusion. We demonstrate that the mitochondria-targeted compounds, introduced immediately after reperfusion, possess various neuroprotective potencies as judged by the lower brain damage and higher neurological status. Plastoquinone derivatives conjugated with rhodamine were the most efficient, and the least efficiency was shown by antioxidants conjugated with tetraphenylphosphonium. Antioxidants were administered intraperitoneally or intranasally with the latter demonstrating a high level of penetration into the brain tissue. The therapeutic effects of both ways of administration were similar. Long-term administration of antioxidants in low doses reduced the neurological deficit, but had no effect on the volume of brain damage. At present, cationic decylrhodamine derivatives of plastoquinone appear to be the most promising anti-ischemic mitochondria-targeted drugs of the quinone family. We suggest these antioxidants could be potentially used for a stroke treatment.
pubmed

Mitodiversity.

10 марта 2016 г.

Here, in addition to the previously coined term "mitobiota", we introduce the term "mitodiversity" for various phenotypic and genetic heterogeneities of mitochondria within the same cell or organ. Based on data on the mitochondrial transmembrane potential determined both in situ and in vitro under normal conditions and after organ ischemia/reperfusion, such heterogeneity is most evident under pathologic conditions. Herein, a part of the mitochondrial population with transmembrane potential typical of the normal state is sustained even under a pathological condition that, perhaps, underlies the development of ways of reversing pathology back to the normal state. The membrane potentials of isolated mitochondria were shown to directly correlate with the magnitude of side-scattered light depicting internal structure of mitochondria. We analyzed possible interpretations of data on mitochondrial membrane potential obtained using fluorescent probes. We suggest a possible mechanism underlying retention of fluorescent probes inside the cells and mitochondria.
Recently described phenomenon of intercellular transfer of mitochondria attracts the attention of researchers in both fundamental science and translational medicine. In particular, the transfer of mitochondria results in the initiation of stem cell differentiation, in reprogramming of differentiated cells, and in the recovery of the lost mitochondrial function in recipient cells. However, the mechanisms of mitochondria transfer between cells and conditions inducing this phenomenon are studied insufficiently. It is still questionable whether this phenomenon exists in vivo. Moreover, it is unclear, how the transfer of mitochondria into somatic cells is affected by the ubiquitination system that, for example, is responsible for the elimination of "alien" mitochondria of the spermatozoon in the oocyte during fertilization. Studies on these processes can provide a powerful incentive for development of strategies for treatment of mitochondria-associated pathologies and give rise a new avenue for therapeutic approaches based on "mitochondrial transplantation".